DIY Mini Cat Tracking Robot Component Documentation
The DIY Mini Cat Tracking Robot is a compact, Arduino-based IoT device designed to track and monitor the movement and activities of your feline friends. This robot is equipped with various sensors and communication modules to provide real-time data on your cat's whereabouts, ensuring their safety and well-being.
Microcontroller: Arduino Nano
Communication Module: Wi-Fi (ESP8266)
Sensors:
+ GPS (NEO-6M)
+ Accelerometer (ADXL345)
+ Temperature and Humidity (DHT11)
Power Supply: 3.7V Li-ion Battery
Motor: 2 x DC Gear Motor (L293D Motor Driver)
Example 1: Basic Tracking and Data Logging
In this example, we will demonstrate how to use the DIY Mini Cat Tracking Robot to track your cat's movement and log the data to a server.
```cpp
#include <WiFi.h>
#include <GPSSerial.h>
// Wi-Fi credentials
const char ssid = "your_wifi_ssid";
const char password = "your_wifi_password";
// GPS module
GPSSerial gps;
void setup() {
// Initialize Wi-Fi
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(1000);
Serial.println("Connecting to Wi-Fi...");
}
Serial.println("Connected to Wi-Fi");
Serial.println("Initializing GPS...");
gps.begin(9600);
}
void loop() {
// Read GPS data
gps.read();
float latitude = gps.latitude;
float longitude = gps.longitude;
float speed = gps.speed;
// Send data to server
WiFiClient client;
client.setServer("your_server_ip", 80);
client.print("GET /log_data?lat=");
client.print(latitude);
client.print("&lon=");
client.print(longitude);
client.print("&speed=");
client.print(speed);
client.println(" HTTP/1.1");
client.println("Host: your_server_ip");
client.println("Connection: close");
client.println();
client.stop();
Example 2: Real-time Tracking with Web Interface
In this example, we will demonstrate how to use the DIY Mini Cat Tracking Robot to track your cat's movement in real-time using a web interface.
```cpp
#include <WiFi.h>
#include <GPSSerial.h>
#include <WiFiWeb.h>
// Wi-Fi credentials
const char ssid = "your_wifi_ssid";
const char password = "your_wifi_password";
// GPS module
GPSSerial gps;
void setup() {
// Initialize Wi-Fi
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(1000);
Serial.println("Connecting to Wi-Fi...");
}
Serial.println("Connected to Wi-Fi");
Serial.println("Initializing GPS...");
gps.begin(9600);
// Initialize web interface
web.begin();
web.on("/track", track);
}
void loop() {
web.handle();
}
void track() {
// Read GPS data
gps.read();
float latitude = gps.latitude;
float longitude = gps.longitude;
// Send data to web interface
web.send(200, "text/html", "<h1>Cat Tracker</h1><p>Latitude: " + String(latitude) + "</p><p>Longitude: " + String(longitude) + "</p>");
}
```
Example 3: Integration with Machine Learning Model for Cat Behavior Analysis
In this example, we will demonstrate how to use the DIY Mini Cat Tracking Robot to collect data and integrate it with a machine learning model to analyze your cat's behavior.
```cpp
#include <WiFi.h>
#include <GPSSerial.h>
#include <TensorFlowLite.h>
// Wi-Fi credentials
const char ssid = "your_wifi_ssid";
const char password = "your_wifi_password";
// GPS module
GPSSerial gps;
// TensorFlow Lite model
TensorFlowLite tflite;
void setup() {
// Initialize Wi-Fi
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(1000);
Serial.println("Connecting to Wi-Fi...");
}
Serial.println("Connected to Wi-Fi");
Serial.println("Initializing GPS...");
gps.begin(9600);
// Initialize TensorFlow Lite model
tflite.begin("cat_behavior_model.tflite");
}
void loop() {
// Read GPS data
gps.read();
float latitude = gps.latitude;
float longitude = gps.longitude;
float speed = gps.speed;
// Prepare data for machine learning model
float data[3] = {latitude, longitude, speed};
// Run inference on machine learning model
int behavior = tflite.run(data);
// Analyze behavior
if (behavior == 0) {
Serial.println("Cat is sleeping");
} else if (behavior == 1) {
Serial.println("Cat is playing");
} else {
Serial.println("Cat is exploring");
}
These code examples demonstrate the versatility of the DIY Mini Cat Tracking Robot component and its potential applications in various contexts.