Stufin
Home Quick Cart Profile

NVIDIA Jetson Nano B01 4GB Developer Kit

Buy Now on Stufin

Computer Vision

Image and video processing, object detection, facial recognition, and more

Natural Language Processing (NLP)Speech recognition, language translation, and sentiment analysis

Robotics

Autonomous navigation, motion control, and sensor processing

IoT

Edge computing, data processing, and real-time analytics

The kit is capable of running multiple neural networks simultaneously, making it an ideal platform for developing and deploying AI-powered applications at the edge.

Key Features

  • NVIDIA Jetson Nano SoM: A powerful energy-efficient AI computing module with a quad-core Cortex-A57 CPU, 128-core NVIDIA Maxwell GPU, and 4GB of memory.
  • AI Performance: Delivers up to 472 GFLOPS of AI performance, making it suitable for running complex AI models.
  • GPIO: 40-pin general-purpose I/O pins for connecting sensors, peripherals, and other devices.
  • Display Outputs: HDMI, DisplayPort, and eDP for connecting displays and monitors.
  • Camera Interfaces: 2x MIPI-CSI-2 lanes for connecting camera modules.
  • Memory and Storage: 4GB of LPDDR4 memory, 16GB of eMMC 5.1 storage, and microSD card slot for expansion.
  • Operating System: Pre-installed with Ubuntu 18.04 and support for other Linux distributions.
  • Power Management: Supports power-efficient design with a maximum power consumption of 10W.
  • Connectivity: Gigabit Ethernet, Wi-Fi, Bluetooth 4.2, and USB 3.0 for connectivity and communication.
  • Development Tools: Includes NVIDIA JetPack SDK, which provides a comprehensive set of tools, libraries, and APIs for developing and deploying AI applications.

Kit Contents

NVIDIA Jetson Nano SoM

Carrier board with GPIO, display outputs, camera interfaces, and other features

Power adapter and cable

USB cable

HDMI cable

Quick Start Guide and documentation

Applications

The NVIDIA Jetson Nano B01 4GB Developer Kit is ideal for various applications, including

Robotics and drones

Smart homes and buildings

Industrial automation and inspection

Healthcare and medical devices

Retail and surveillance systems

Autonomous vehicles and transportation systems

Conclusion

The NVIDIA Jetson Nano B01 4GB Developer Kit is a powerful and versatile platform for developing and deploying AI-powered edge devices. With its impressive performance, low power consumption, and comprehensive development tools, it is an ideal choice for developers, researchers, and innovators working on AI-powered projects.

Pin Configuration

  • NVIDIA Jetson Nano B01 4GB Developer Kit Pinout Guide
  • The NVIDIA Jetson Nano B01 4GB Developer Kit is a powerful and compact AI computing platform designed for IoT and edge computing applications. The kit features a 69-pin header that provides access to various peripherals, interfaces, and power pins. Here's a detailed breakdown of each pin:
  • Power Pins:
  • 1. VIN (Pin 1): Input voltage pin, typically 5V, for powering the board.
  • 2. 3V3 (Pin 2): 3.3V power output pin, used to power external components.
  • 3. 5V0 (Pin 3): 5V power output pin, used to power external components.
  • Ground Pins:
  • 4. GND (Pins 4, 5, 6, 13, 27, 39, 51, 63): Multiple ground pins for connecting to the negative terminal of power sources or for signal grounding.
  • USB and Serial Interfaces:
  • 5. USB_DP (Pin 7): USB Data+ pin for connecting to a USB device or host.
  • 6. USB_DM (Pin 8): USB Data- pin for connecting to a USB device or host.
  • 7. UART_TXD (Pin 9): UART transmit pin for serial communication.
  • 8. UART_RXD (Pin 10): UART receive pin for serial communication.
  • 9. UART_CTS (Pin 11): UART clear to send pin for flow control.
  • 10. UART_RTS (Pin 12): UART request to send pin for flow control.
  • I2C and I2S Interfaces:
  • 11. I2C_SCL (Pin 14): I2C clock pin for serial communication.
  • 12. I2C_SDA (Pin 15): I2C data pin for serial communication.
  • 13. I2S_CLK (Pin 16): I2S clock pin for audio interfaces.
  • 14. I2S_WS (Pin 17): I2S word select pin for audio interfaces.
  • 15. I2S_SD (Pin 18): I2S serial data pin for audio interfaces.
  • SPI Interface:
  • 16. SPI_CLK (Pin 19): SPI clock pin for serial communication.
  • 17. SPI_MOSI (Pin 20): SPI master out slave in pin for serial communication.
  • 18. SPI_MISO (Pin 21): SPI master in slave out pin for serial communication.
  • 19. SPI_CS (Pin 22): SPI chip select pin for serial communication.
  • GPIO and Special Function Pins:
  • 20. GPIO03 (Pin 23): General-purpose input/output pin.
  • 21. GPIO05 (Pin 24): General-purpose input/output pin.
  • 22. GPIO07 (Pin 25): General-purpose input/output pin.
  • 23. GPIO08 (Pin 26): General-purpose input/output pin.
  • 24. GPIO09 (Pin 28): General-purpose input/output pin.
  • 25. GPIO10 (Pin 29): General-purpose input/output pin.
  • 26. GPIO11 (Pin 30): General-purpose input/output pin.
  • 27. GPIO12 (Pin 31): General-purpose input/output pin.
  • 28. GPIO13 (Pin 32): General-purpose input/output pin.
  • 29. GPIO14 (Pin 33): General-purpose input/output pin.
  • 30. GPIO15 (Pin 34): General-purpose input/output pin.
  • 31. GPIO18 (Pin 35): General-purpose input/output pin.
  • 32. GPIO19 (Pin 36): General-purpose input/output pin.
  • 33. GPIO20 (Pin 37): General-purpose input/output pin.
  • 34. GPIO21 (Pin 38): General-purpose input/output pin.
  • 35. GPIO22 (Pin 40): General-purpose input/output pin.
  • 36. GPIO23 (Pin 41): General-purpose input/output pin.
  • 37. HDMI_CEC (Pin 42): HDMI consumer electronics control pin.
  • 38. HDMI_SCL (Pin 43): HDMI I2C clock pin.
  • 39. HDMI_SDA (Pin 44): HDMI I2C data pin.
  • Camera and Display Interfaces:
  • 40. CSI2_LANE0 (Pin 45): Camera serial interface lane 0 pin.
  • 41. CSI2_LANE1 (Pin 46): Camera serial interface lane 1 pin.
  • 42. CSI2_LANE2 (Pin 47): Camera serial interface lane 2 pin.
  • 43. CSI2_LANE3 (Pin 48): Camera serial interface lane 3 pin.
  • 44. DSI_LANE0 (Pin 49): Display serial interface lane 0 pin.
  • 45. DSI_LANE1 (Pin 50): Display serial interface lane 1 pin.
  • 46. DSI_LANE2 (Pin 52): Display serial interface lane 2 pin.
  • 47. DSI_LANE3 (Pin 53): Display serial interface lane 3 pin.
  • Reset and Power Management Pins:
  • 48. RESET_IN (Pin 54): Reset input pin for system reset.
  • 49. POWER_ON (Pin 55): Power on pin for system power management.
  • 50. SHUTDOWN (Pin 56): Shutdown pin for system power management.
  • 51. WAKEUP (Pin 57): Wakeup pin for system power management.
  • Miscellaneous Pins:
  • 52. KEY (Pin 58): Key press detect pin for system wake-up.
  • 53. KLATE (Pin 59): Key ladder input pin for system wake-up.
  • 54. GPIO39 (Pin 60): General-purpose input/output pin.
  • 55. GPIO40 (Pin 61): General-purpose input/output pin.
  • 56. GPIO41 (Pin 62): General-purpose input/output pin.
  • 57. GPIO42 (Pin 64): General-purpose input/output pin.
  • 58. GPIO43 (Pin 65): General-purpose input/output pin.
  • 59. NC (Pins 66-69): No connect pins, not used.
  • Pin Connection Guidelines:
  • When connecting to the Jetson Nano's 69-pin header, follow these guidelines:
  • Make sure to use a compatible connector or cable to connect to the header.
  • Use jumper wires or a breadboard to connect to individual pins.
  • Be careful not to short circuit any pins, as this can damage the board.
  • Ensure that the power pins (VIN, 3V3, and 5V0) are connected to a suitable power source.
  • Verify that the ground pins (GND) are connected to a common ground point.
  • Refer to the Jetson Nano's datasheet and technical documentation for specific pin usage and limitations.
  • By following these guidelines and understanding the pinout of the NVIDIA Jetson Nano B01 4GB Developer Kit, you can successfully connect and utilize the various peripherals and interfaces available on the board.

Code Examples

NVIDIA Jetson Nano B01 4GB Developer Kit Documentation
Overview
The NVIDIA Jetson Nano B01 4GB Developer Kit is a small, powerful, and low-power AI computing platform designed for developers, makers, and students. It's ideal for creating AI-powered robots, drones, intelligent vehicles, and other IoT projects.
Hardware Specifications
Processor: NVIDIA Quad-core Cortex-A57 MPCore CPU
 Memory: 4GB LPDDR4 RAM
 Storage: 16GB eMMC 5.1 flash storage
 Graphics: NVIDIA Maxwell GPU with 128 CUDA cores
 Operating System: Ubuntu 18.04 Linux
Developing with the Jetson Nano
The Jetson Nano supports various programming languages, including Python, C++, and Java. Here are some code examples to demonstrate how to use the Jetson Nano in different contexts:
Example 1: Image Classification using Python and TensorFlow
In this example, we'll use the Jetson Nano to classify images using TensorFlow and the Keras API.
```python
import tensorflow as tf
from tensorflow.keras.applications import MobileNetV2
from tensorflow.keras.preprocessing.image import load_img, img_to_array
# Load the MobileNetV2 model
model = MobileNetV2(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
# Load an image and preprocess it
img = load_img('image.jpg', target_size=(224, 224))
img_array = img_to_array(img)
img_array = img_array / 255.0
# Create a batch of images
batch = tf.expand_dims(img_array, 0)
# Run the model on the image
output = model.predict(batch)
# Get the top-5 predicted classes
=top-5 predicted classes>
probabilities = tf.keras.applications.mobilenet_v2.decode_predictions(output, top=5)[0]
print(probabilities)
```
This code assumes you have TensorFlow installed on your Jetson Nano. You can install it using `pip install tensorflow`.
Example 2: Real-time Object Detection using OpenCV and Python
In this example, we'll use the Jetson Nano to detect objects in real-time using OpenCV and Python.
```python
import cv2
# Initialize the camera
cap = cv2.VideoCapture(0)
while True:
    # Read a frame from the camera
    ret, frame = cap.read()
# Convert the frame to grayscale
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Use the Haar cascade classifier to detect faces
    face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
    faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5)
# Draw rectangles around the detected faces
    for (x, y, w, h) in faces:
        cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)
# Display the output
    cv2.imshow('Object Detection', frame)
# Exit on key press
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
# Release the camera and close the window
cap.release()
cv2.destroyAllWindows()
```
This code assumes you have OpenCV installed on your Jetson Nano. You can install it using `pip install opencv-python`.
These examples demonstrate the Jetson Nano's capabilities in AI computing and computer vision. With its powerful GPU and low power consumption, the Jetson Nano is an ideal platform for developing intelligent IoT devices.